4.5 Article

Sweeter But Deadlier: Decoupling Size, Charge and Capping Effects in Carbohydrate Coated Bactericidal Silver Nanoparticles

Journal

JOURNAL OF BIOMEDICAL NANOTECHNOLOGY
Volume 9, Issue 11, Pages 1817-1826

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jbn.2013.1699

Keywords

Silver Nanoparticles; Carbohydrate Stabilization; Starch; Chitosan; Bactericidal Properties

Funding

  1. Fapesp [2011/21954-7]
  2. Nanoglicobiotec-CNPq [564741/2010-86]
  3. LNLS
  4. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [11/21954-7] Funding Source: FAPESP

Ask authors/readers for more resources

Silver nanoparticles are widely used due to their biomedical-antibacterial applications. At the same time, the stabilization of these nanoparticles is challenging and may be made using polymeric carbohydrates, based on the practice of avoiding toxic chemicals and undesirable residues. In this study, we synthesized silver nanoparticles (AgNPs) which were stabilized by carbohydrates (potato starch and chitosan) and characterized by UV-Vis spectroscopy, zeta potential and transmission electron microscopy techniques. Bactericidal efficiency of AgNPs capped with different carbohydrates was tested demonstrating that the synthesized materials were able to inhibit the growth of two clinical/medical relevant bacteria strains (Escherichia coli and Staphylococcus aureus). AgNPs stabilized by chitosan presented enhanced bactericidal activity if compared to the ones synthesized in presence of potato starch. This difference is mainly attributed to the known antibacterial properties of chitosan associated to overall positive charge of the nanoparticles capped by this polymer. Those nanoparticles obtained in presence of starch presented minor bactericidal effects since the starch-capping agent is not able to contribute to the avoidance of bacteria growth and confers a quasi-neutral charge to the nanoparticle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available