4.5 Article

Delivery of BMP-2 by two clinically available apatite materials: In vitro and in vivo comparison

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 103, Issue 2, Pages 628-638

Publisher

WILEY
DOI: 10.1002/jbm.a.35211

Keywords

delivery; bone regeneration; bone substitute; bone morphogenetic protein; BMP; release system

Ask authors/readers for more resources

Bone morphogenetic proteins (BMPs) are deposited in bone and responsible for osteoinduction. The interplay between delivery system and BMP, resulting in a characteristic release profile, is crucial for clinical success. We here report on two apatite based commercially available granules which could potentially be used in a combination product with recombinant human BMP-2 (rhBMP-2). Regardless of their similar chemistry, their interaction with rhBMP-2 differs. Deproteinized bovine bone matrix (DBBM), a clinically well-established bone substitute, has a high affinity to rhBMP-2 and releases only 50% of the growth factor during the first 2 weeks in vitro. Activity of the physio-adsorbed rhBMP-2 is indicated by an enhanced bone augmentation in vivo. In contrast, all rhBMP-2 delivered in combination with synthetic hydroxyapatite/beta-tricalcium phosphate (HA/TCP) granules is released during the first 24 h. For both HA/TCP and DBBM, the released rhBMP-2 is active in vitro. Our results suggest that the different release behavior from these two apatite granules is due to the 1000-fold higher specific surface area of DBBM compared to HA/TCP. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available