4.2 Article

Effect of Spinal Level and Loading Conditions on the Production of Vertebral Burst Fractures in a Porcine Model

Publisher

ASME
DOI: 10.1115/1.4004917

Keywords

biomechanics; vertebral fracture; in vitro; porcine model

Funding

  1. Canada Foundation for Innovation (CFI)
  2. Natural Science and Engineering Research Council of Canada (NSERC)
  3. Canadian Institutes of Health Research (CIHR)

Ask authors/readers for more resources

Vertebral burst fractures are commonly studied with experimental animal models. There is however a lack of consensus as to what parameters are important to create an unstable burst fracture with a significant canal encroachment on such model. This study aims to assess the effect of the loading rate, flexion angle, spinal level, and their interactions on the production of a vertebral thoracolumbar burst fracture on a porcine model. Sixteen functional spinal units composed of three vertebrae were harvested from mature Yucatan minipigs. Two loading rates (0.01 and 500 mm/s), two flexion angles (0 degrees and 15 degrees), and two spinal levels (T11-T13 and T14-L2) were studied, following a full factorial experimental plan with one repetition. Compression was applied to each functional unit to create a vertebral fracture. The load-to-failure, loss of compressive stiffness, final canal encroachment, and fracture type were used as criteria to evaluate the resulting fracture. All specimens compressed without flexion resulted in burst fractures. Half of the specimens compressed with the 15 degrees flexion angle resulted in compression fractures. Specimens positioned without flexion lost more of their compressive stiffness and had more significant canal encroachment. Fractured units compressed with a higher loading rate resulted in a greater loss of compressive stiffness. The spinal level had no significant effect on the resulting fractures. The main parameters which affect the resulting fracture are the loading rate and the flexion angle. A higher loading rate and the absence of flexion favors the production of burst fractures with a greater canal encroachment. [DOI: 10.1115/1.4004917]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available