4.6 Article

The Rare TXNRD1_v3 (v3) Splice Variant of Human Thioredoxin Reductase 1 Protein Is Targeted to Membrane Rafts by N-Acylation and Induces Filopodia Independently of Its Redox Active Site Integrity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 288, Issue 14, Pages 10002-10011

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.445932

Keywords

-

Funding

  1. Swedish Research Council (Medicine)
  2. Swedish Cancer Society
  3. Wallenberg Foundations
  4. Karolinska Institutet
  5. Medical Research Council (MRC)
  6. Polio Research Foundation (PRF) of South Africa

Ask authors/readers for more resources

The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available