4.6 Article

Silent Information Regulator 2 (Sir2) and Forkhead Box O (FOXO) Complement Mitochondrial Dysfunction and Dopaminergic Neuron Loss in Drosophila PTEN-induced Kinase 1 (PINK1) Null Mutant

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 16, Pages 12750-12758

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.337907

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) [2008-0059520, 2009-0093188]
  2. Korean government (Ministry Of Education, Science And Technology (MEST)
  3. MEST [2010-0018291]
  4. National Research Foundation of Korea [2009-0093188, 2008-0059520] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

PTEN-induced kinase 1 (PINK1), which is associated with early onset Parkinson disease, encodes a serine-threonine kinase that is critical for maintaining mitochondrial function. Moreover, another Parkinson disease-linked gene, parkin, functions downstream of PINK1 in protecting mitochondria and dopaminergic (DA) neuron. In our fly genetic screening, knockdown of Sir2 blocked PINK1 overexpression-induced phenotypes. Consistently, ectopic expression of Sir2 successfully rescued mitochondrial defects in PINK1 null mutants, but unexpectedly, failed in parkin mutants. In further genetic analyses, deletion of FOXO nullified the Sir2-induced mitochondrial restoration in PINK1 null mutants. Moreover, overexpression of FOXO or its downstream target gene such as SOD2 or Thor markedly ameliorated PINK1 loss-of-function defects, suggesting that FOXO mediates the mitochondrial protecting signal induced by Sir2. Consistent with its mitochondria-protecting role, Sir2 expression prevented the DA neuron loss of PINK1 null mutants in a FOXO-dependent manner. Loss of Sir2 or FOXO induced DA neuron degeneration, which is very similar to that of PINK1 null mutants. Furthermore, PINK1 deletion had no deleterious effect on the DA neuron loss in Sir2 or FOXO mutants, supporting the idea that Sir2, FOXO, and PINK1 protect DA neuron in a common pathway. Overall, these results strongly support the role of Sir2 and FOXO in preventing mitochondrial dysfunction and DA neuron loss, further suggesting that Sir2 and FOXO function downstream of PINK1 and independently of Parkin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available