4.6 Article

The C-terminal Peptide of Chondroadherin Modulates Cellular Activity by Selectively Binding to Heparan Sulfate Chains

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 288, Issue 2, Pages 995-1008

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.430512

Keywords

-

Funding

  1. Swedish Research Council
  2. King Gustaf V:s 80-year Fund
  3. Osterlund Foundation
  4. Kock Foundation
  5. European Commission 7th Framework Program for Research
  6. NanoDiaRa
  7. Anamar Medical

Ask authors/readers for more resources

Chondroadherin, a leucine-rich repeat family member, contains a very C-terminal sequence CKFPTKRSKKAGRH(359), now shown to bind to heparin with a K-D of 13 mu M. This observation led us to investigate whether chondroadherin interacts via this C-terminal heparin-binding domain with glycosaminoglycan chains of proteoglycans at the cell surface. Cells were shown to bind this heparin-binding peptide in FACS analysis, and the interaction was shown to be with glycosaminoglycans because it was abolished when sulfation was inhibited by chlorate treatment of the cells. In separate experiments, heparin and heparan sulfate inhibited the peptide interaction in a dose-dependent manner. Using a human chondrosarcoma and a murine osteoblast cell line, heparan sulfate proteoglycans were identified as the cell surface receptors involved in the binding. Different binding syndecans were identified in the two different cell lines, indicating that the same protein core of a proteoglycan may have structural and functional differences in the attached heparan sulfate chains. Upon binding to coated peptide, cells spread, demonstrating engagement of the cytoskeleton, but no focal adhesion complex was formed. The number of cells adhering via their beta(1) integrin receptor to collagen type II or chondroadherin was profoundly and rapidly enhanced by the addition of the heparin-binding peptide. The peptide added to the cells caused ERK phosphorylation, showing that it triggered intracellular signaling. The results show that heparan sulfate chains differ between various members of the proteoglycan families on a given cell, but also differ between the same proteoglycan on different cells with a potential for differential regulation of cellular activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available