4.6 Article

Connective Tissue Growth Factor Regulates Retinal Neovascularization through p53 Protein-dependent Transactivation of the Matrix Metalloproteinase (MMP)-2 Gene

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 48, Pages 40570-40585

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.386565

Keywords

-

Funding

  1. National Institutes of Health [EY022091-01, EY019387-01A1]
  2. NEI [DK39776]

Ask authors/readers for more resources

Pathological angiogenesis in the retina is driven by dysregulation of hypoxia-driven stimuli that coordinate physiological vessel growth. How the various components of the neovascularization signaling network are integrated to yield pathological changes has not been defined. Connective tissue growth factor (CTGF/CCN2) is an inducible matricellular protein that plays a major role in fibroproliferative disorders. Here, we show that CTGF/CCN2 was dynamically expressed in the developing murine retinal vasculature and was abnormally increased and localized within neovascular tufts in the mouse eye with oxygen-induced retinopathy. Consistent with its propitious vascular localization, ectopic expression of the CTGF/CCN2 gene further accelerated neovascularization, whereas lentivirus-mediated loss-of-function or -expression of CTGF/CCN2 harnessed ischemia-induced neovessel outgrowth in oxygen-induced retinopathy mice. The neovascular effects of CTGF/CCN2 were mediated, at least in part, through increased expression and activity of matrix metalloproteinase (MMP)-2, which drives vascular remodeling through degradation of matrix and non matrix proteins, migration and invasion of endothelial cells, and formation of new vascular patterns. In cultured cells, CTGF/CCN2 activated the MMP-2 promoter through increased expression and tethering of the p53 transcription factor to a highly conserved p53-binding sequence within the MMP-2 promoter. Concordantly, the neovascular effects of CTGF/CCN2 were suppressed by p53 inhibition that culminated in reduced enrichment of the MMP-2 promoter with p53 and decreased MMP-2 gene expression. Our data identified new gene targets and downstream effectors of CTGF/CCN2 and provided the rational basis for targeting the p53 pathway to curtail the effects of CTGF/CCN2 on neovessel formation associated with ischemic retinopathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available