4.6 Article

A Novel Aminosaccharide Compound Blocks Immune Responses by Toll-like Receptors and Nucleotide-binding Domain, Leucine-rich Repeat Proteins

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 7, Pages 5727-5735

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.108001

Keywords

-

Funding

  1. Eisai Research Institute under Dana-Farber Cancer Institute [2696, CRF 734]
  2. Cancer Research Institute
  3. Claudia Adams Barr Award

Ask authors/readers for more resources

Toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat (NLR) proteins are two major forms of innate immune receptors that trigger inflammatory responses by various biological mechanisms such as cytokine production, recruitment of inflammatory cells, or activation of adaptive immunity. Although the innate immune system is designed to fight against infectious pathogens, excessive activation of TLR or NLR signaling pathways may lead to unwarranted inflammation with hazardous outcomes, including septic shock or inflammatory diseases. As part of the search for effective therapeutics to regulate these responses, here we show that a novel aminosaccharide compound, named DFK1012, inhibits immune responses caused by TLR and NLR activation. Treatment with DFK1012, but not its derivatives DFK845 or DFK846, strongly inhibited pro-inflammatory cytokine production upon stimulation via either TLR or NLR proteins in macrophages. Importantly, we have not observed cytotoxicity in any range of its working concentration. Treatment with DFK1012 did not interfere with TLR- or NLR-induced activation of p38 and JNK, phosphorylation/degradation of I kappa B, and subsequent nuclear translocation of NF-kappa B subunit p65, suggesting that the inhibitory activity of DFK1012 is not due to the suppression of downstream signaling. Indeed, DFK1012 did not impair transcription of pro-inflammatory cytokine genes but rather promoted post-translational degradation of pro-inflammatory cytokines. Therefore, DFK1012 is a novel anti-inflammatory compound that drives proteolysis of proinflammatory cytokines induced by TLR and NLR stimulation. DFK1012 may represent a novel class of potential therapeutic agents aimed at the treatment of inflammatory disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available