4.6 Article

Maspin Regulates Endothelial Cell Adhesion and Migration through an Integrin Signaling Pathway

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 42, Pages 32360-32369

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.131045

Keywords

-

Funding

  1. National Institutes of Health from the NCI [CA79736]
  2. Northwestern University

Ask authors/readers for more resources

Maspin has been identified as a potent angiogenesis inhibitor. However, the molecular mechanism responsible for its anti-angiogenic property is unclear. In this study, we examined the effect of maspin on endothelial cell (EC) adhesion and migration in a cell culture system. We found that maspin was expressed in blood vessels ECs and human umbilical vein endothelial cells (HUVECs). Maspin significantly enhanced HUVEC cell adhesion to various matrix proteins. This effect was dependent on the activation of integrin beta(1), which subsequently led to distribution pattern changes of vinculin and F-actin. These results indicated that maspin affects cell adhesion and cytoskeleton reorganization through an integrin signal transduction pathway. Analysis of HUVECs following maspin treatment revealed increased integrin-linked kinase activities and phosphorylated FAK levels, consistent with increased cell adhesion. Interestingly, when HUVECs were induced to migrate by migration stimulatory factor bFGF, active Rac1 and cdc42 small GTPase levels were decreased dramatically at 30 min following maspin treatment. Using phosphorylated FAK at Tyr(397) as an indicator of focal adhesion disassembly, maspin-treated HUVECs had elevated FAK phosphorylation compared with the mock treated control. The results were a reduction in focal adhesion disassembly and the retardation in EC migration. This study uncovers a mechanism by which maspin exerts its effect on EC adhesion and migration through an integrin signal transduction pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available