4.6 Article

Light-induced hydrogen bonding pattern and driving force of electron transfer in AppA BLUF domain photoreceptor

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 45, Pages 30618-30623

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M803864200

Keywords

-

Ask authors/readers for more resources

The AppA BLUF (blue light sensing using FAD) domain from Rhodobacter sphaeroides serves as a blue light-sensing photoreceptor. The charge separation process between Tyr-21 and flavin plays an important role in the light signaling state by transforming the dark state conformation to the light state one. By solving the linearized Poisson-Boltzmann equation, I calculated E(m) for Tyr-21, flavin, and redox-active Trp-104 and revealed the electron transfer (ET) driving energy. Rotation of the Gln-63 side chain that converts protein conformation from the dark state to the light state is responsible for the decrease of 150 mV in E(m) for Tyr-21, leading to the significantly larger ET driving energy in the light state conformation. The pK(alpha) values of protonation for flavin anions are essentially the same in both dark and light state crystal structures. In contrast to the ET via Tyr-21, formation of the W.(+) state results in generation of only the dark state conformation (even if the initial conformation is in the light state); this could explain why Trp-104-mediated ET deactivates the light-sensing yield and why the activity of W104A mutant is similar to that of the light-adapted native BLUF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available