4.3 Article

The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited

Journal

JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
Volume 42, Issue 4, Pages 261-278

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10863-010-9301-z

Keywords

NADH:ubiquinone oxidoreductase; Complex I; NADPH; Rapid kinetics; EPR

Funding

  1. Netherlands Organization for the Advancement of pure Research (N.W.O.) under the auspices of the Netherlands Foundation for Chemical Research

Ask authors/readers for more resources

Bovine NADH:ubiquinone oxidoreductase (Complex I) is the first complex in the mitochondrial respiratory chain. It has long been assumed that it contained only one FMN group. However, as demonstrated in 2003, the intact enzyme contains two FMN groups. The second FMN was proposed to be located in a conserved flavodoxin fold predicted to be present in the PSST subunit. The long-known reaction of Complex I with NADPH differs in many aspects from that with NADH. It was proposed that the second flavin group was specifically involved in the reaction with NADPH. The X-ray structure of the hydrophilic domain of Complex I from Thermus thermophilus (Sazanov and Hinchliffe 2006, Science 311, 1430-1436) disclosed the positions of all redox groups of that enzyme and of the subunits holding them. The PSST subunit indeed contains the predicted flavodoxin fold although it did not contain FMN. Inspired by this structure, the present paper describes a re-evaluation of the enigmatic reactions of the bovine enzyme with NADPH. Published data, as well as new freeze-quench kinetic data presented here, are incompatible with the general opinion that NADPH and NADH react at the same site. Instead, it is proposed that these pyridine nucleotides react at opposite ends of the 90 long chain of prosthetic groups in Complex I. Ubiquinone is proposed to react with the Fe-S clusters in the TYKY subunit deep inside the hydrophilic domain. A new model for electron transfer in Complex I is proposed. In the accompanying paper this model is compared with the one advocated in current literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available