4.5 Article

Carbonyl Traps as Potential Protective Agents against Methimazole-Induced Liver Injury

Journal

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY
Volume 29, Issue 4, Pages 173-181

Publisher

WILEY
DOI: 10.1002/jbt.21682

Keywords

Antithyroid Drugs; Drug-Induced Liver Injury (DILI); Endocrinology; Glyoxal; Reactive Metabolite

Ask authors/readers for more resources

Liver injury is a deleterious adverse effect associated with methimazole administration, and reactive intermediates are suspected to be involved in this complication. Glyoxal is an expected reactive intermediate produced during methimazole metabolism. Current investigation was undertaken to evaluate the role of carnosine, metformin, and N-acetyl cysteine as putative glyoxal (carbonyl) traps, against methimazole-induced hepatotoxicity. Methimazole (100 mg/kg, intraperitoneally) was administered to intact and/or glutathione (GSH)-depleted mice and the role of glyoxal trapping agents was investigated. Methimazole caused liver injury as revealed by an increase in serum alanine aminotransferase and aspartate aminotransferase. Moreover, lipid peroxidation and protein carbonylation occurred significantly in methimazole-treated animals' liver. Hepatic GSH reservoirs were decreased, and inflammatory cells infiltration was observed in liver histopathology. Methimazole-induced hepatotoxicity was severe in GSH-depleted mice and accompanied with interstitial hemorrhage and necrosis of the liver. Glyoxal trapping agents effectively diminished methimazole-induced liver injury both in intact and/or GSH-depleted animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available