4.6 Article

Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys?

Journal

JOURNAL OF ASIAN EARTH SCIENCES
Volume 34, Issue 1, Pages 76-89

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jseaes.2008.04.001

Keywords

Eclogite; HP/UHPM; Oceanic subduction; Lhasa block; Tethys

Funding

  1. China Geological Survey [1212010610107, 1212010610105]

Ask authors/readers for more resources

A newly discovered eclogite belt in the eastern part of the Lhasa Block, Tibet, is about 500-1000 m wide and at least 60 km long in an E-W direction. The eclogites occur as tectonic slices in garnet-bearing, mica-quartz schist. They are generally fresh and form thick, massive layers that consist chiefly of garnet (Grt) + omphacite (Omp) + phengite (Phe) + rutile (Rut) + quartz (Qtz). P-T calculations based on the Grt-Omp-Phe mineral assemblage yielded peak metamorphic conditions of 2.7 GPa and 730 degrees C, close to the phase boundary between coesite and quartz and thus the eclogites can be regarded as part of a very high-pressure metamorphic belt. Petrochemical data suggest that the eclogite protoliths were typical MORB basalts, derived from depleted mantle. SHRIMP U-Pb dating of zircons from the eclogite yielded metamorphic ages ranging from 242 +/- 15 to 292 +/- 13 Ma, with an average value of 262 +/- 5 Ma. The MORB eclogites are interpreted to be remnants of Paleo-Tethyan oceanic lithosphere. The eclogites, along with Permian island arc volcanic rocks to the north, are believed to mark a Carboniferous-Permian suture zone dividing the Lhasa Block into a northern and southern segment. This newly identified suture zone suggests that the border of the Paleo-Tethyan Ocean jumped southward from north of the Bangong-Nujiang suture to within what is now the Lhasa Block. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available