4.6 Article

Cassava Starch-graft-Polymethacrylamide Copolymers as Flocculants and Textile Sizing Agents

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 131, Issue 2, Pages -

Publisher

WILEY-BLACKWELL
DOI: 10.1002/app.39810

Keywords

applications; biomaterials; biopolymers & renewable polymers; copolymers; differential scanning calorimetry

Funding

  1. Council for Scientific and Industrial Research of the Government of India (New Delhi, India)

Ask authors/readers for more resources

Cassava starch-graft-polymethacrylamide (PMAM) copolymers were synthesized by a free-radical-initiated polymerization reaction, and the products were tested for their efficiency as flocculants and textile sizing agents. The highest percentages of grafting and monomer conversion were 79.9 and 78.0%, respectively. The grafted starches were characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The average molecular weight of PMAM chains in the grafted starches ranged from 15.9 to 30.8 X 10(5) g/mol. The grafted starches exhibited a higher peak viscosity and paste stability in comparison to the native starch (NS). Dynamic mechanical analysis showed that grafting provided fairly shear-stable hydrogels, and the highest storage modulus obtained was 17,900 Pa compared to 1879 Pa for NS. The flocculation studies demonstrated the superiority of starch-g-PMAM over cassava starch and PMAM as an efficient flocculant. The tensile strength of cotton yarns sized with the starch-grafted copolymer was significantly higher (104 MPa) compared to that sized with NS (34 MPa). (C) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available