4.6 Article

Estimation of surface properties of grafted layers formed on low- and high-density polyethylene plates by photografting of methacrylic acid and acrylic acid at different monomer concentrations and temperatures

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 125, Issue 4, Pages 2614-2625

Publisher

WILEY
DOI: 10.1002/app.36399

Keywords

ESCA; XPS; graft copolymers; hydrophilic polymers; polyethylene; surface modification

Ask authors/readers for more resources

An investigation was carried out on estimation of hydrophilicity, wettability and water-absorptivity, and surface analysis by X-ray photoelectron spectroscopy of the low- and high-density polyethylene (LDPE and HDPE) plates photografted with methacrylic acid (MAA) and acrylic acid (AA) at different monomer concentrations or temperatures. Wettability of the MAA-grafted LDPE and HDPE plates increased with grafted amounts, and became constant when the substrate surfaces were fully covered with the grafted polymer chains. On the other hand, for the AA-grafted LDPE and HDPE plates, wettability had the maximum value, and then gradually decreased against the grafted amount probably due to aggregation of grafted PAA chains, although the surfaces were covered with grafted PAA chains at lower grafted amounts compared with grafted PMAA chains. Water-absorptivity sharply increased at lower grafted amounts due to formation of shorter grafted polymer chains for photografting at lower monomer concentrations or due to restriction of the location of grafting to the outer surface region for photografting at lower temperatures. Therefore, for photograftings of AA or onto the HDPE plates, the substrate surfaces were covered with grafted polymer chains and the grafted layers formed possessed higher water-absorptivity at lower grafted amounts. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available