4.6 Article

Effect of carbon nanofiber functionalization on the in-plane mechanical properties of carbon/epoxy multiscale composites

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 125, Issue 3, Pages 1951-1958

Publisher

WILEY
DOI: 10.1002/app.36302

Keywords

carbon nanofiber; functionalization; multiscale composites; interface; mechanical properties

Ask authors/readers for more resources

In this work, vapor-grown carbon nanofibers (CNFs) were functionalized using an optimized route and dispersed in the matrix of carbon fabric-reinforced epoxy composites to develop multiscale carbon/epoxy composites. Functionalization was carried out through an oxidative treatment with a mixture of HNO3/H2SO4 (1 : 3) using a combination of ultrasonication and magnetic stirring. Functionalized CNFs (F-CNFs) were characterized for their morphology, length, functional groups, and degradation due to oxidative treatment. The results showed that it was possible to efficiently functionalize CNFs without any degradation through proper selection of treatment duration. F-CNFs were dispersed homogeneously into the epoxy matrix using ultrasonication in combination with high-speed mechanical stirring. The incorporation of 0.1 wt % F-CNFs led to a 65% increase in Young's modulus and a 36% in tensile strength of neat carbon/epoxy composites. The fracture surfaces were studied using scanning electron microscopy to understand the property enhancement due to F-CNFs. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available