4.6 Article

Structure-property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 124, Issue 1, Pages 9-18

Publisher

WILEY-BLACKWELL
DOI: 10.1002/app.34910

Keywords

polyesters; fibers; morphology; structure-property relations; flame retardance

Funding

  1. German Research Foundation (DFG) [AL 474/17-1]

Ask authors/readers for more resources

Flame retardancy for thermoplastics is a challenging task where chemists and engineers work together to find solutions to improve the burning behavior without strongly influencing other key properties of the material. In this work, the halogen-free additives aluminum diethylphosphinate (AlPi-Et) and a mixture of aluminum phosphinate (AlPi) and resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H + RXP) are employed in neat and reinforced poly(butylene terephthalate) (PBT), and the morphology, mechanical performance, rheological behavior, and flammability of these materials are compared. Both additives show submicron dimensions but differ in terms of particle and agglomerate sizes und shapes. The overall mechanical performance of the PBT flame-retarded with AlPi-Et is lower than that with AlPi-H-RXP, due to the presence of larger agglomerates. Moreover, the flow behavior of the AlPi-Et/PBT materials is dramatically changed as the larger rod-like primary particles build a percolation threshold. In terms of flammability, both additives perform similar in the UL 94 test and under forced-flaming combustion. Nevertheless, AlPi-Et performs better than AlPi-H + RXP in the LOI test. The concentration required to achieve acceptable flame retardancy ranges above 15 wt %. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available