4.6 Article

Preparation of Poly(Acrylonitrile-Butadiene-Styrene)/Montmorillonite Nanocomposites and Degradation Studies During Extrusion Reprocessing

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 113, Issue 4, Pages 2271-2281

Publisher

WILEY
DOI: 10.1002/app.30158

Keywords

clay; degradation; extrusion; nanocomposites; recycling

Ask authors/readers for more resources

In this study, the preparation of organically modified montmorillonite/poly(acrylonitrile-butadienestyrene) (ABS) nanocomposites was studied by melt blending in a twin-screw extruder. The composite material was subjected to a series of five extrusion cycles, and the effect of reprocessing on the material's structural properties was investigated. More specifically, chemical changes were studied with attenuated total reflectance/Fourier transform infrared analysis, the thermal response was recorded by differential scanning calorimetry experiments, and the thermal stability was detected with thermogravimetric analysis. Also, the rheological properties of these blends,were investigated via melt flow index tests as a measure of their processability during melt mixing and molding processes. Furthermore, the mechanical strength of the obtained mixtures was explored, and the observed interactions were interpreted in terms of the influence of each component on the functional properties of the final mixture. This attempt enriched our knowledge about the recycling of ABS, with the additional aspect of the use of collected data from more complex systems, that is, composite materials, where the montmorillonite nanoparticles play a role in the interactions initiated by repeated processing. The experimental results of this study show that the reprocessing of ABS/montmorillonite induced oxidation products, but the rheological, mechanical, and thermal properties and the thermal and color stabilities of the composites remained almost stable. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 2271-2281, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available