4.6 Article

Durability Enhancement of Nafion® Fuel Cell Membranes Via In Situ Sol-Gel-Derived Titanium Dioxide Reinforcement

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 113, Issue 5, Pages 3269-3278

Publisher

WILEY
DOI: 10.1002/app.30195

Keywords

fuel cell; Nafion (R); titania; sol-gel; mechanical durability

Funding

  1. Department of Energy (US Department of Energy-Office of Energy Efficiency and Renewable Energy) [DE-FG36-06GO86065]

Ask authors/readers for more resources

To improve durability of Nafion(R) membranes, samples were modified via an in situ sol-gel polymerization Of titanium isopropoxide to generate titania quasi-networks in the polar domains. The incorporated titania reduced water uptake but equivalent weight was essentially unchanged. Fuel cell performance of the modified membrane was inferior to that of the unfilled membrane although these were considered as model Studies with focus on mechanical durability. Mechanical analysis of contractile stress buildup during drying from a swollen state in samples clamped at constant length demonstrated considerable reinforcement of Nafion(R) by the titania Structures. Tensile Studies showed that at 80 degrees C and 100%) relative humidity the dimensional change of the composite membrane is one half and the initial modulus is three times higher than that Of the unmodified membrane. During an open circuit voltage decay test the voltage decay rate for the modified membrane is 3.5 times lower than that of control Nafion(C). Fluoride emission for the composite is at least In order of magnitude lower than that of the control Nafion(R) membrane indicating reduced chemical degradation. These model Studies indicate that this in situ inorganic modification offers a way to enhance fuel Cell membrane durability by reducing both physical and chemical degradation. (C) 2009, Wiley Periodicals, Inc. J Appl Polym Sci 113:3269-3278, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available