4.6 Article

Influence of different functionalized multiwall carbon nanotubes on the mechanical properties of poly(ethylene terephthalate) fibers

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 108, Issue 5, Pages 2865-2871

Publisher

WILEY
DOI: 10.1002/app.27770

Keywords

fibers; mechanical properties; nanocomposites

Ask authors/readers for more resources

Master batches with four different kinds of functionalized multiwall carbon nanotubes (MWCTs) were prepared through the mixing of MWCTs with poly(ethylene terephthalate) (PET) (0.01 : 0.99 w/w) in trifluoroacetic acid/dichloromethane mixed solvents (0.7 : 0.3 v/v) followed by the removal of the solvents in the mixture by flocculation. The results of scanning electron microscopy showed that a good dispersion of MWCTs in PET was achieved. The reinforced fibers were fabricated by the melt spinning of PET chips with small amounts of the master batch and then further postdrawing. The optimal spinning conditions for the reinforcement of fibers were a 0.6-mm spinneret hole and a 250 m/min wind-up speed. Among the four master batches, the fibers obtained from PET/master batch B made by acid-treatment had the highest enhancement of mechanical properties. For a 0.02 wt % loading of acid-treated MWCT, the breaking strength of the PET/master batch B composite fibers increased by 36.9% (from 4.45 to 6.09 cN/dtex), and the initial modulus increased by 41.2% (from 80.7 to 113.9 cN/dtex). (C) 2008 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available