4.8 Article

Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding

Journal

NATURE GEOSCIENCE
Volume 9, Issue 1, Pages 42-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO2600

Keywords

-

Ask authors/readers for more resources

A link between chemical weathering and physical erosion exists at the catchment scale over a wide range of erosion rates(1,2). However, in mountain environments, where erosion rates are highest, weathering may be kinetically limited(3-5) and therefore decoupled from erosion. In active mountain belts, erosion is driven by bedrock landsliding(6) at rates that depend strongly on the occurrence of extreme rainfall or seismicity(7). Although landslides affect only a small proportion of the landscape, bedrock landsliding can promote the collection and slow percolation of surface runoff in highly fragmented rock debris and create favourable conditions for weathering. Here we show from analysis of surface water chemistry in the Southern Alps of New Zealand that weathering in bedrock landslides controls the variability in solute load of these mountain rivers. We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales from a single hillslope to an entire mountain belt, and that landslides boost weathering rates and river solute loads over decades. We conclude that landslides couple erosion and weathering in fast-eroding uplands and, thus, mountain weathering is a stochastic process that is sensitive to climatic and tectonic controls on mass wasting processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available