4.6 Article

Transport of hydrogen in metals with occupancy dependent trap energies

Journal

JOURNAL OF APPLIED PHYSICS
Volume 116, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4896580

Keywords

-

Funding

  1. EURATOM

Ask authors/readers for more resources

Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available