4.6 Article

Surface charge sensing by altering the phase transition in VO2

Journal

JOURNAL OF APPLIED PHYSICS
Volume 116, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4893577

Keywords

-

Funding

  1. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available