4.6 Article

Emission dynamics of an expanding ultrafast-laser produced Zn plasma under different ambient pressures

Journal

JOURNAL OF APPLIED PHYSICS
Volume 114, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4820575

Keywords

-

Ask authors/readers for more resources

We report time and space resolved spectral measurements of neutral Zn emission from an ultrafast laser produced plasma, generated by the irradiation of a Zn target with laser pulses of 100 femtoseconds duration, carried out in a broad ambient pressure range of 0.05 to 100 Torr. The measurement is done for three different axial positions in the expanding plume. The spectra are rich in neutral Zn (Zn I) emissions at 334.5 nm, 468 nm, 472 nm, 481 nm, and 636 nm, respectively, depicting the characteristic triplet structure of Zn. Fast as well as slow peaks are observed in the time of flight data of 481 nm emission, which arise from recombination and atomic contributions, respectively, occurring at different time scales. Average speeds of the fast atomic species do not change appreciably with ambient pressure. The plasma parameters (electron temperature and number density) are evaluated from the measured optical emission spectra. The rates of ionization and recombination can be enhanced by a double-pulse excitation configuration in which optical energy is coupled to the ultrafast plasma through a delayed laser pulse. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available