4.6 Article

Influence of capping layers on CoFeB anisotropy and damping

Journal

JOURNAL OF APPLIED PHYSICS
Volume 112, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4749412

Keywords

-

Funding

  1. U.S. Department of Defense DARPA-MTO STT-RAM Universal Memory contract through Grandis Inc., Milpitas, CA
  2. NSF [ECCS-0529369 SST]

Ask authors/readers for more resources

Magnetic behavior of CoFeB at various thicknesses ranging from 2 nm to 8 nm capped with different materials, such as MgO, Ta, Ru, and V have been studied. The films were sputter-deposited and subsequently characterized by magnetometry and broadband ferromagnetic resonance (FMR). There are magnetically dead layers at the interface observed with Ru and Ta capping layers, while MgO and V have almost no effect on the magnetization of the CoFeB. As the ferromagnetic layer is made thinner, the effective magnetization decreases, indicating an interfacial perpendicular anisotropy. Particularly in the case of MgO, V/Ru, and V/Ta capping layers, interfacial perpendicular anisotropy is induced in CoFeB, and the Gilbert damping parameter is also reduced. The origin of this perpendicular magnetic anisotropy (PMA) is understood to be caused by the interface anisotropy between the free layer and the capping layer. The effect of post-deposition annealing and CoFeB thickness on the anisotropy and damping of V/Ta capped samples are reported. Doping CoFeB with vanadium (V) greatly reduced the 4 pi M-s and 4 pi M-eff values, resulting in an effective increase in the PMA. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749412]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available