4.6 Article

Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

Journal

JOURNAL OF APPLIED PHYSICS
Volume 111, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3691895

Keywords

-

Funding

  1. Australian Research Council

Ask authors/readers for more resources

Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 +/- 2%) before annealing which is increased to 47 6 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691895]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available