4.6 Article Proceedings Paper

Nanoscale piezoresponse studies of ferroelectric domains in epitaxial BiFeO3 nanostructures

Journal

JOURNAL OF APPLIED PHYSICS
Volume 105, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3055412

Keywords

-

Ask authors/readers for more resources

We report the dependence of the ferroelectric domain configuration and switching behavior on the shape (square versus round) of epitaxial BiFeO3 (BFO) nanostructures. We fabricated (001) oriented BFO(120 nm)/SrRuO3(SRO, 125 nm) film layers on (001) SrTiO3 single crystals by rf magnetron sputter deposition, and patterned them to square (500x500 nm(2)) and round (502 nm in diameter) shaped nanostructures by focused ion-beam lithography. The surface morphology and the crystalline structure of the nanostructures were characterized by scanning electron microscopy and x-ray diffraction, respectively, while the domain configuration was investigated using piezoelectric force microscopy. We found that the square-shaped nanostructures exhibit a single variant domain configuration aligned along the [(1) over bar1 (1) over bar] direction, whereas the round- shaped nanostructures exhibit seven variants of domain configuration along the [(1) over bar1 (1) over bar], [1 (1) over bar(1) over bar], [11 (1) over bar1], [111], [(1) over bar 11], [1(1) over bar1] and [(11) over bar1] directions. Moreover, local d(33) piezoelectric coefficient measurements showed hysteresis loops with a strong displacement in the voltage axis (strong imprint) for the square- shaped nanostructures, while the round- shaped ones exhibited more symmetric loops. These findings have critical implications for the development of nanocapacitors for gigabyte to terabyte nonvolatile ferroelectric memories. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3055412]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available