4.6 Article

Effects of diffusion boundary layer on reaction kinetics of immunoassay in a biosensor

Journal

JOURNAL OF APPLIED PHYSICS
Volume 103, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2909980

Keywords

-

Ask authors/readers for more resources

Specific binding reaction is a natural characteristic that is applied to design biosensors. This work simulates the binding reaction kinetics of two commonly used proteins, C-reactive protein and immunoglobulin G, in a reaction chamber (microchannel) of a biosensor. For a diffusion-limited protein, the diffusion boundary layer on the reaction surface of the biosensor would hinder the binding reaction from association and dissociation. Several crucial factors, which influence the binding reaction curves in the simulation, are discussed, including the concentration of analyte, the inlet flow velocity, the channel height, and the length of the reaction surface. A higher channel causes the diffusive transport of the analyte to take longer time to reach the reaction surface, which in turn decreases the reaction rate of the protein pairs. The length of the reaction surface plays an important role in the formation of the boundary layer. For longer reaction surface, it takes more time to allow diffusion to overcome the larger zone of the diffusion boundary layer, resulting in a slower binding rate and a longer time to reach saturation. The presented data of simulation are useful in designing the biosensors. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available