4.6 Article

Field emission properties of carbon nanotube pillar arrays

Journal

JOURNAL OF APPLIED PHYSICS
Volume 103, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2870931

Keywords

-

Ask authors/readers for more resources

Carbon nanotube pillar arrays (CPAs) for cold field emission applications were grown directly on polished 70/30 at. % NiCr alloy surfaces patterned by photolithography. A carbon nanotube (CNT) pillar is a localized, vertically aligned, and well-ordered group of multiwalled CNTs resulting from van der Waals forces within high-density CNT growth. The edge effect, in which the applied electric field is enhanced along the edge of each pillar, is primarily responsible for the excellent emission properties of CPAs. We achieved efficient emission with turn-on fields as low as 0.9 V/mu m and stable current densities as high as 10 mA/cm(2) at an applied macroscopic field of 5.7 V/mu m. We investigated the effects of pillar aspect ratio, density, and spacing on CPA field emission and quantified the edge effect with respect to pillar aspect ratio through modeling. We also investigated the field emission stability and found substantial improvement with CPAs compared to continuous and patterned CNT films. (c) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available