4.6 Article

Ex situ doping of silicon nanowires with boron

Journal

JOURNAL OF APPLIED PHYSICS
Volume 103, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2924415

Keywords

-

Ask authors/readers for more resources

An ex situ proximity technique is demonstrated for the electrical doping of silicon nanowires with spin on dopant (SOD) used as the boron source. The technique is based on solid-state diffusion and is comprised of two stages: predeposition and drive in. During predeposition, a predetermined amount of boron is introduced into the near surface region of the nanowires by holding the SOD source in close proximity to the nanowires. The boron concentration in the nanowires is controlled by the appropriate selection of predeposition temperature and time, with 800 and 950 degrees C and 5-10 min used in the present studies. The boron is then diffused further into the nanowires during the drive-in stage. The doped nanowires were characterized using scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, and four-probe electrical transport measurements. The high temperatures employed in this doping process do not result in any observable damage to these 120-180 nm diameter nanowires and good control over the dopant concentration in the range from 10(18) to 10(20) cm(-3) is obtained. This ex situ doping technique provides a useful alternative to the methods currently available for electrical doping of nanowires, which are predominantly in situ techniques. (c) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available