4.7 Article

Effects of implants of trenbolone acetate, estradiol, or both, on muscle insulin-like growth factor-I, insulin-like growth factor-I receptor, estrogen receptor-α, and androgen receptor messenger ribonucleic acid levels in feedlot steers

Journal

JOURNAL OF ANIMAL SCIENCE
Volume 86, Issue 12, Pages 3418-3423

Publisher

OXFORD UNIV PRESS INC
DOI: 10.2527/jas.2008-1085

Keywords

bovine; estradiol-17 beta; insulin-like growth factor-I; muscle; trenbolone acetate

Funding

  1. USDA Cooperative State Research, Education, and Extension Service [2006-35206-16663]
  2. Minnesota Agricultural Experiment Station (University of Minnesota, St. Paul, MN)
  3. Kansas Agricultural Experiment Station (Kansas State University, Manhattan, KS)

Ask authors/readers for more resources

We previously showed that a combined trenbolone acetate ( TBA)/estradiol-17 beta (E2) implant significantly increases IGF-I mRNA levels in the LM of feedlot steers by 28 d after implantation. Here we compare the effects of E2 (25.7 mg), TBA (120 mg), and combined TBA (120 mg)/E2 (24 mg) implants on IGF-I, IGF-I receptor (IGFR-1), estrogen receptor (ER)-alpha and androgen receptor (AR) mRNA levels in the LM of steers. Twenty yearling crossbred steers with an average initial BW of 421.1 +/- 3.6 kg were stratified by BW and randomly assigned to 1 of 4 treatments: 1) nonimplanted, control; 2) implanted with TBA and E2; 3) implanted with E2; or 4) implanted with TBA. Steers were weighed weekly starting on d 0, and muscle biopsy samples were taken from each steer on d 0 (before implantation), 7, 14, and 28. Ribonucleic acid was prepared from each sample and real-time reverse transcription-PCR was used to determine the levels of IGF-I, IGFR-1, ER-alpha, and AR mRNA. Body weight of implanted steers, adjusted by using d-0 BW as a covariant, tended (P = 0.09) to be greater than that of control steers. On d 7 and 28, IGF-I mRNA levels were greater (58 and 78%, respectively; P < 0.009) in E2-implanted animals than in control steers. Similarly, on d 28 the LM IGF-I mRNA level was 65% greater (P = 0.017) in TBA/E2-implanted steers than in control animals. In contrast, the TBA implant did not increase (P = 0.99) LM IGF-I mRNA levels after 28 d of implantation. Muscle IGFR- 1, AR, and ER-alpha mRNA levels were not different (P > 0.47) in any of the treated groups compared with the control group. These data suggest that E2 is responsible for the increased muscle IGF- I mRNA level observed in steers implanted with a combined TBA/ E2 implant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available