4.7 Article

Formation of ultrafine three-dimensional hierarchical birnessite-type MnO2 nanoflowers for supercapacitor

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 607, Issue -, Pages 245-250

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2014.04.077

Keywords

Oxide materials; Ultrafine; Nanostructured materials; Energy storage materials; Supercapacitor

Funding

  1. National Natural Science Foundation of China [61166008, 21176051]
  2. Guangxi Natural Science Foundation [2012GXNSFFA060002, 2013GXNSFAA019294, 2013GXNSFBA019234]
  3. Key Project of Chinese Ministry of Education [211141]
  4. Guangxi Key Laboratory of Information Materials [1110908-02-K, 1110908-05-K]
  5. Educational Commission of Guangxi Province of China [201101ZD007]
  6. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) [2012-KF-7]
  7. Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology [20130322]

Ask authors/readers for more resources

Ultrafine (50-100 nm in diameter) birnessite-type MnO2 nanoflowers assembled by numerous ultrathin nanosheets (3-6 nm in thickness and 30-50 nm in width) have been synthesized via a simple and scalable solution route under ambient conditions. The ratio of reactants plays a significant role in the formation of MnO2 nanoflowers and the as-prepared MnO2 hierarchical nanostructure exhibits excellent electrochemical performance with high specific capacitance (251.3 Fg (1) at 0.5 Ag (1)) and superior cycling stability (only 7.5% SC loss after 10,000 cycling test) and good rate capability. The unique microstructures of MnO2 nanoflowers are responsible for their superior electrochemical properties, and thus it may be a promising for supercapacitor application. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Textiles

Ag/VO2/Ag sandwich nylon film for smart thermal management and thermo-responsive electrical conductivity

Linghui Peng, Lingling Shen, Weiren Fan, Zichuan Liu, Hongbo Qiu, Aibing Yu, Xuchuan Jiang

Summary: The importance of outdoor thermal comfort due to climate change has led to the development of a smart thermal management film with an Ag/VO2/Ag sandwich structure. This film can reduce temperature by around 10 degrees C under intense infrared radiation and has potential applications in wearable devices, flexible electronics, medical monitors, and smart IR radiation management.

JOURNAL OF INDUSTRIAL TEXTILES (2022)

Article Metallurgy & Metallurgical Engineering

Numerical simulation of fuel layered distribution iron ore sintering technology

Siddhartha Shrestha, Jin Xu, Aibing Yu, Zongyan Zhou

Summary: FLDS technology can effectively reduce fuel consumption and improve the quality of sintered products by evenly distributing heat patterns. Air velocity and bed height have significant influences on the operation, and sensitivity analysis can provide guidance for FLDS operation.

IRONMAKING & STEELMAKING (2022)

Article Engineering, Chemical

Modelling the co-firing of coal and biomass in a 10 kWth oxy-fuel fluidized bed

Qinwen Liu, Wenqi Zhong, Aibing Yu, Chi-Hwa Wang

Summary: With the improvement of the models for oxy-fuel co-firing, the adaptability of the models to the oxy-fuel atmosphere can be enhanced, and the accurate prediction of NO, N2O, SO2 emissions can be achieved. This study also provided valuable information for the design and operation control of oxy-fuel co-firing of coal and biomass in a fluidized bed.

POWDER TECHNOLOGY (2022)

Article Energy & Fuels

Particle-scale study of coke combustion in the raceway of an ironmaking blast furnace

Dianyu E, Peng Zhou, Suya Guo, Jia Zeng, Qiang Xu, Liejin Guo, Qinfu Hou, Aibing Yu

Summary: This study employed a multiscale method to investigate the evolution, microscale characteristics, coke temperature, and combustion in the raceway of a blast furnace under different operating conditions. The results showed consistent distributions of coke temperature, carbon loss, and diameter variation, and the carbon monoxide concentration was influenced by the oxygen concentration but not by changes in the inlet gas temperature and flow rate.
Article Energy & Fuels

Optimization of pulverized coal injection (PCI) rate in an ironmaking blast furnace by an integrated process model

Lingling Liu, Shibo Kuang, Lulu Jiao, Baoyu Guo, Aibing Yu

Summary: This study presents a numerical investigation on the effects of pulverized coal injection (PCI) in an industrial blast furnace. The results show that appropriate oxygen enrichment and suitable burden distribution can enhance the maximum operable PCI rate, while excessive oxygen enrichment increases coke consumption. The integrated model used in this study can serve as a cost-effective tool to optimize PCI effects on blast furnace performance.
Article Engineering, Chemical

Coarse-grained CFD-DEM study of Gas-solid flow in gas cyclone

Kaiwei Chu, Yanxing Chen, Li Ji, Zongqing Zhou, Aibing Yu, Jiang Chen

Summary: This study presents a numerical investigation of gas-solid flow in a gas cyclone using a coarse-grained combined Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) model. The results demonstrate that the model captures the typical flow features in a gas cyclone and highlights the importance of including the van der Waals force for accurate separation efficiency prediction.

CHEMICAL ENGINEERING SCIENCE (2022)

Article Energy & Fuels

Numerical modeling and analysis of hydrogen blast furnace ironmaking process

Jing Li, Shibo Kuang, Lulu Jiao, Lingling Liu, Ruiping Zou, Aibing Yu

Summary: The study investigates the impact of hydrogen enrichment on a blast furnace, finding that as hydrogen content increases, the coke rate initially decreases before increasing, and productivity improves but slows down gradually. The optimal hydrogen enrichment can be determined based on the minimum coke rate. Overall, hydrogen enrichment enhances the energy efficiency of the blast furnace.
Article Engineering, Chemical

Co-simulation of multibody dynamics and discrete element method for hydraulic excavators

Jieqing Gan, Zongyan Zhou, Aibing Yu, Dean Ellis, Reece Attwood, Wei Chen

Summary: Multibody dynamics (MBD) simulation is a useful tool for analyzing the kinematic function of multibody systems, while discrete element method (DEM) is commonly used for simulating particle flows and overall processes. Combining MBD and DEM methods through functional mock-up interface (FMI) co-simulation can predict equipment performance by considering both material and equipment behavior. This study utilized Dymola software to perform MBD and FMI co-simulations, developing MBD models for a hydraulic excavator system and GPU-based DEM models for excavator digging cycles. The results demonstrated the significant impact of solid materials on excavator movement.

POWDER TECHNOLOGY (2023)

Article Engineering, Chemical

Optimization of Ironmaking Blast Furnace Operations Using an Integrated Mathematical Model

Lingling Liu, Shibo Kuang, Baoyu Guo, Aibing Yu

Summary: Optimization of ironmaking blast furnaces involves considering bottom and top operations. A recently developed integrated BF model and numerical orthogonal experiments are used to predict BF performance indicators and conduct multi-objective optimization and operatable zone identification.

CHEMIE INGENIEUR TECHNIK (2023)

Article Energy & Fuels

Injection of COREX off-gas into ironmaking blast furnace

Lingling Liu, Shibo Kuang, Baoyu Guo, Aibing Yu

Summary: Oxygen blast furnace (OBF) is a low carbon ironmaking technology that suffers from high gas flame temperature. Injecting COREX off-gas (CROG) into the industrial BF can improve coal combustion and overall performance. The optimum injection rate of CROG helps achieve better fuel economy by enhancing indirect reduction and coke combustion.
Article Engineering, Chemical

Numerical study of the multiphase flows and separation performance of hydrocyclone with tapered cross-section inlet

E. Dianyu, Haihan Fan, Zhongfang Su, Guangtai Xu, Ruiping Zou, Aibing Yu, Shibo Kuang

Summary: This paper proposes a hydrocyclone with a tapered inlet design to reduce the influence of particles misplacement. The new hydrocyclone integrates the advantages of both spiral inlet and tangential inlet. Through the analysis of separation performance, flow characteristics, and volume fraction distributions, an optimum design is identified. Compared to a standard hydrocyclone, the new design significantly improves tangential velocities, expands the locus of zero vertical velocity, and achieves more stable air core, symmetric radial and axial velocity distributions, as well as reduced eddy flow and short-circuit flow. This study offers a new perspective for improving hydrocyclone flows and performance.

POWDER TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Droplets Patterning of Structurally Integrated 3D Conductive Networks-Based Flexible Strain Sensors for Healthcare Monitoring

Yang Zhang, Danjiao Zhao, Lei Cao, Lanlan Fan, Aiping Lin, Shufen Wang, Feng Gu, Aibing Yu

Summary: Flexible strain sensors are crucial for public healthcare as they can noninvasively monitor vital health signals. In this study, we developed structurally integrated 3D conductive networks-based flexible strain sensors using a droplet-based aerosol jet printing process and a transfer process. The sensors showed enhanced conduction and mechanical properties during stretching, and demonstrated effective responses to human movements such as finger bending and arm bending. Our findings highlight the potential of droplet-based aerosol jet printing for advanced flexible devices in optoelectronics and wearable electronics applications.

NANOMATERIALS (2023)

Article Engineering, Chemical

New understanding from intestinal absorption model: How physiological features influence mass transfer and absorption

Yifan Qin, Xiao Dong Chen, Aibing Yu, Jie Xiao

Summary: Mathematical modeling of mass transfer and absorption in the small intestine is challenging and requires a reliable and computationally efficient predictive model. This study derives an absorption model that considers the 3D intestinal inner wall structure and can be used in a 1D distributed model. Computational fluid dynamics simulations are used to quantify the mass-transfer coefficient. The model provides insights into the influence of intestinal morphology and motility on mass transfer and absorption.

AICHE JOURNAL (2023)

Article Energy & Fuels

Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace

E. Dianyu, Peng Zhou, Langyong Ji, Jiaxin Cui, Qiang Xu, Liejin Guo, Aibing Yu

Summary: In this study, a validated CFD-DEM model is used to investigate the dynamics, microstructure, and thermochemical behaviors in the raceway of a blast furnace with hydrogen injection operations. The effects of hydrogen injection concentration on raceway size, gas temperature, and components are studied.
Article Pharmacology & Pharmacy

Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA

Hao Miao, Ke Huang, Yingwen Li, Renjie Li, Xudong Zhou, Jingyu Shi, Zhenbo Tong, Zhenhua Sun, Aibing Yu

Summary: In this study, the LNP formulation, atomization methods, and buffer system were optimized to maintain stability and efficiency of mRNA encapsulated LNPs during the atomization process. A suitable LNP formulation for atomization, AX4, DSPC, cholesterol, and DMG-PEG2K at a 35/16/46.5/2.5 (%) molar ratio, was identified based on in vitro experiments. Soft mist inhaler (SMI) was found to be the most suitable method for pulmonary delivery of mRNA encapsulated LNPs. The physico-chemical properties of the LNPs, such as size and entrapment efficiency, were further improved by adjusting the buffer system with trehalose. In vivo fluorescence imaging of mice demonstrated the potential of SMI with proper LNPs design and buffer system for inhaled mRNA-LNP therapies.

INTERNATIONAL JOURNAL OF PHARMACEUTICS (2023)

Article Chemistry, Physical

Magnetic/optical assessments of RFeO3 (R=La, Pr, Nd, and Sm) ceramics: An experimental and theoretical discernment

J. Zamora, T. Bautista, N. S. Portillo-Velez, A. Reyes-Montero, H. Pfeiffer, F. Sanchez-Ochoa, H. A. Lara-Garcia

Summary: Experimental and DFT studies were conducted on the structural, magnetic, and optical properties of RFeO3 perovskites. The perovskites exhibited an orthorhombic crystal structure and weak ferromagnetic behavior. They were confirmed to be semiconductors with a bandgap of approximately 2.1 eV.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

The effect of Ti-based surface layer on AlSi thin film as a high-performance anode for the lithium-ion battery

Xianxiang Lv, Jing Jin, Weiguang Yang

Summary: By depositing TiN and TiO2 surface layers on AlSi films, the electrochemical performance of silicon-based anodes can be significantly improved, suppressing volume expansion and promoting the formation of a stable SEI layer.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Bifunctional phosphate-modulated Cu2O/CeO2 redox heterojunction: A promising approach for proficient CO2 reduction

Sharafat Ali, Haider Ali, Syedul Hasnain Bakhtiar, Sajjad Ali, Muhammad Zahid, Ahmed Ismail, Pir Muhammad Ismail, Amir Zada, Imran Khan, Huahai Shen, Rizwan Ullah, Habib Khan, Mohamed Bououdina, Xiaoqiang Wu, Fazal Raziq, Liang Qiao

Summary: The construction and optimization of redox-heterojunctions using a bifunctional phosphate as an electron-bridge demonstrated significant improvements in photo catalytic activity, including enhanced dispersion, reduced interfacial migration resistance, and increased abundance of active-sites.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Engineering heterogeneous synergistic interface and multifunctional cobalt-iron site enabling high-performance oxygen evolution reaction

Ren-Ni Luan, Na Xu, Chao-Ran Li, Zhi-Jie Zhang, Yu-Sheng Zhang, Jun Nan, Shu-Tao Wang, Yong-Ming Chai, Bin Dong

Summary: Extensive research has revealed that oxygen evolution reaction (OER) in alkaline conditions involves dynamic surface restructuring. The development and design of sulfide/oxide pre-catalysts can reasonably adjust the composition and structure after surface reconstruction, which is crucial for OER. This study utilized a simple two-step hydrothermal method to achieve in situ S leaching and doping, inducing the composition change and structure reconstruction of CoFe oxides. The transformed FeOOH and CoOOH exhibited excellent OER activity and could be easily mass-produced using low-cost iron based materials and simple methods.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Highly efficiency blue emissive from Bi3+ions in zero-dimensional organic bismuth halide for white LED applications

Jun'an Lai, Daofu Wu, Peng He, Kang An, Yijia Wang, Peng Feng, WeiWei Chen, Zixian Wang, Linfeng Guo, Xiaosheng Tang

Summary: Zero-dimensional organic-inorganic metal halides (OMHs) are gaining attention in the fabrication of light-emitting diodes due to their broad emission band and high photoluminescence quantum yield. This work synthesized a zero-dimensional organic tetraphenylphosphonium bismuth chloride (TBC) that showed efficient blue light emission, with the emission mechanism attributed to the transition of Bi3+ ions. White light-emitting diodes (WLEDs) were fabricated using TBC, along with green-emitting and red-emitting single crystals, achieving single-component white emissions. These findings demonstrate the different emission mechanism of ns2 ions-based OMHs and highlight the potential of bismuth-based OMHs in WLEDs applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Study on the wear resistance and mechanism of AlCrCuFe2NiTix high-entropy surfacing alloys

Xuewei Liang, Yunhai Su, Taisen Yang, Zhiyong Dai, Yingdi Wang, Xingping Yong

Summary: The revolutionary design concept of high-entropy alloys has brought new opportunities and challenges to the development of advanced metal materials. In this work, AlCrCuFe2NiTix high-entropy flux cored wires were prepared by combining the design idea of a high-entropy alloy with the characteristics of flux cored wire. AlCr-CuFe2NiTix high-entropy surfacing alloys were prepared using gas metal arc welding technology. The wear properties of the alloys were analyzed, and the phase composition, microstructure, strengthening mechanism, and wear mechanism were discussed. The results show that the alloys exhibit a dendritic microstructure with BCC/B2 + FCC phases. Increasing Ti content leads to the precipitation of Laves phase. The alloys show improved microhardness and wear resistance due to the precipitation of coherent B2 and Laves phases. However, excessive Ti addition results in the increase of Laves phase and reduced wear resistance of the alloys.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Facile synthesis of ternary g-C3N4/polyacrylic acid/CoFe2O4 nanocomposites for solar light irradiated photocatalytic and supercapacitor applications

M. Vadivel, M. Senthil Pandian, P. Ramasamy, Qiang Jing, Bo Liu

Summary: This work presents the enhanced photocatalytic and electrochemical performance of g-C3N4 assisted PAA on CoFe2O4 ternary nanocomposites. The incorporation of PAA and g-C3N4 improves the separation efficiency of photogenerated charge carriers, resulting in superior photocatalytic degradation and high specific capacitance values.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Investigation on bio-synthesized Ni- and Al-doped cobalt ferrite using lemon juice as eco-fuel

Vibhu T. Sivanandan, Ramany Revathy, Arun S. Prasad

Summary: In this study, pure and doped cobalt ferrite nanoparticles were prepared using the sol-gel auto-combustion method with the aid of lemon juice as eco-fuel. The crystal structure, lattice parameter, crystallite size, microstrain, optical parameters, and room temperature magnetic properties of the samples were analyzed. The effect of doping on the magnetic properties was also investigated.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Cu, Ni and Ag ions assisted preparation of nonpolar preferential oriented ZnO films with controlled morphology and optical properties

Qing Guo, Bowen Zhang, Benzhe Sun, Yang Qi

Summary: This study prepared ZnO films with various nonpolar preferred orientations using conventional chemical bath deposition method and characterized their growth process and mechanism. It was found that the type and concentration of nitrate could control the preferred orientation and surface roughness of ZnO films. Additionally, ZnO films with different preferred orientations exhibited different optical properties.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Characterization of magnetic FeCo particles with controlled bimetallic composition

Chong Zhang, Yan Liu, Zhaoyan Wang, Hang Yang

Summary: In this study, six bimetallic FeCo particles were synthesized via the hydrothermal method at different Fe:Co ratios. The Fe:Co ratio not only modulates the composition of the particles but also influences their structure and magnetic properties. The FeCo alloys showed a transformation from an Fe-based structure to a Co-based structure with increasing Co content. The Fe:Co ratio of 1:1 and 3:1 resulted in particles with the highest and lowest saturation magnetization, respectively.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Micro-alloying effects of Ta and B on nano-oxides and grain boundaries in 13CrWTi-ODS ferritic alloys

Jianning Zhang, Jing Li, Yiren Wang, Xiaodong Mao, Yong Jiang

Summary: We conducted a study on the formation of ultra-fine Y-Ti-Ta-O nano-oxides in Ta+B micro-alloyed 13CrWTi-ODS alloys using electron microscopy and first-principles calculations. The Y-Ti-Ta-O nano-oxides were found to be mainly Y2(Ti,Ta)2O7, with an average size of 7 nm and a number density of 6.8 x 1023 m-3. Excess boron was found to enhance the adhesion of some low-sigma grain boundaries but weaken the Fe/Y2Ti2O7 interface, while excess tantalum enhanced the Fe/Y2Ti2O7 interface but caused serious degradation of grain boundaries.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Nitrogen-doped reduced graphene oxide/black phosphorus quantum dot composites for electrocatalytic treatment of choroidal melanoma

Yirong Fang, Pei Cheng, Hang Yuan, Hao Zhao, Lishu Zhang

Summary: A new composite system of nitrogen-doped reduced graphene oxide and black phosphorus quantum dots has been developed for tumor therapy, showing improved electrochemical properties and stability. The system generates hydrogen peroxide and hydroxyl radical to effectively kill tumor cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping

Xiufang Qin, Yuanli Ma, Hui Zhang, Ting Zhang, Fang Wang, Xiaohong Xu

Summary: The structure and magnetism of cobalt ferrites after Mn2+-Tb3+ co-doping were studied. Co-doped samples exhibited cubic spinel structure and spherical shape of ferrite nanoparticles. The redistribution of Co2+ and Fe3+ ions between octahedral and tetrahedral sites was observed due to Mn2+-Tb3+ co-doping. The coercivity and magnetization saturation of co-doped samples were significantly improved, leading to a maximum energy product that is 190% higher than that of the un-doped sample.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

High-performance low-temperature solid oxide fuel cell with nanostructured lanthanum strontium cobaltite/yttria-stabilized zirconia cathode via advanced co-sputtering

Ho Yeon Lee, Wonjong Yu, Yoon Ho Lee

Summary: Recently, there has been an increasing interest in developing ultra-fine nanostructured electrodes with extensive reaction areas to enhance the performance and low-temperature operation of solid oxide fuel cells. The use of a refined approach involving co-sputtering metal alloys and oxide targets has demonstrated the feasibility of nano-columnar structures in perovskite-based electrodes, expanding the temperature range of thin film electrodes. This study systematically examines the effects of chamber pressure control in the co-sputtering process and identifies the intricate relationship between sputtering pressure and film structure. By fine-tuning the columnar growth in the electrode, significant improvements in performance and thermo-mechanical properties were achieved, resulting in high-performance all-sputtered solid oxide fuel cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction

Qianyun Bai, Xiaoxiao Yan, Da Liu, Kang Xiang, Xin Tu, Yanhui Guo, Renbing Wu

Summary: This study proposes a simple method to develop a non-precious transition metal-based electrocatalyst with high catalytic activity and robustness for the hydrogen evolution reaction. The as-synthesized electrode exhibits a low overpotential and high current density, indicating its potential in energy conversion.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)