4.8 Article

The effects of shell layer morphology and processing on the electrical and photovoltaic properties of silicon nanowire radial p+-n+ junctions

Journal

NANOSCALE
Volume 7, Issue 16, Pages 7267-7274

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr00512d

Keywords

-

Funding

  1. U.S. Department of Energy [DE-FG36-08GO18010]
  2. National Science Foundation [0335765]

Ask authors/readers for more resources

Single wire p(+)-n(+) radial junction nanowire solar cell devices were fabricated by low pressure chemical vapor deposition of n(+) silicon shell layers on p(+) silicon nanowires synthesized by vapor-liquid-solid growth. The n(+)-shell layers were deposited at two growth temperatures (650 degrees C and 950 degrees C) to study the impact of shell crystallinity on the device properties. The n-type Si shell layers deposited at 650 degrees C were polycrystalline and resulted in diodes that were not rectifying. A pre-coating anneal at 950 degrees C in H-2 improved the structural quality of the shell layers and yielded diodes with a dark saturation current density of 3 x 10(-5) A cm(-2). Deposition of the n-type Si shell layer at 950 degrees C resulted in epitaxial growth on the nanowire core, which lowered the dark saturation current density to 3 x 10(-7) A cm(-2) and increased the solar energy conversion efficiency. Temperature-dependent current-voltage measurements demonstrated that the 950 degrees C coated devices were abrupt junction p(+)-n(+) diodes with band-to-band tunneling at high reverse-bias voltage, while multi-step tunneling degraded the performance of devices fabricated with a 950 degrees C anneal and 650 degrees C coating. The higher trap density of the 950 degrees C annealed 650 degrees C coated devices is believed to arise from the polycrystalline nature of the shell layer coating, which results in an increased density of dangling bonds at the p(+)-n(+) junction interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available