4.5 Article

Testing and System Identification of an Ornithopter in Longitudinal Flight

Journal

JOURNAL OF AIRCRAFT
Volume 48, Issue 2, Pages 660-667

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.C031208

Keywords

-

Funding

  1. Army Micro Autonomous Systems and Technology Collaborative Technology Alliance
  2. University of Maryland
  3. National Institute of Aerospace
  4. NASA Langley Research Center

Ask authors/readers for more resources

There is currently a large effort underway to understand the flight dynamics of avian-based flapping-wing vehicles, or ornithopters, as they represent a critical intersection between existing biological flyers and the need for small aerial robots to conduct a variety of mission scenarios. Efforts to model the flight dynamics of these vehicles for feedback control have been complicated by a number of factors including nonlinear flight motions, unsteady aerodynamics at low Reynolds numbers, and limited sensor payload capacity. This paper presents data for a 0.45 kg ornithopter research platform, flown in straight and level mean flight. A visual tracking system was employed to follow retroreflective markers on the ornithopter and reconstruct state measurements. A multibody model of the flight dynamics was used to investigate the spatial distribution of kinematic variables over the duration of a wing stroke, and system identification techniques were employed to extract models for the lift, thrust, and pitching moment coefficients. Two methods of parameter estimation showed good results for relatively simple aerodynamic models that can be used for feedback control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available