4.5 Article Proceedings Paper

Analytical Sensitivity Analysis of an Unsteady Vortex-Lattice Method for Flapping-Wing Optimization

Journal

JOURNAL OF AIRCRAFT
Volume 47, Issue 2, Pages 647-662

Publisher

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.46259

Keywords

-

Ask authors/readers for more resources

This work considers the design optimization of a flapping wing in forward flight with active shape morphing, aimed at maximizing propulsive efficiency under lift and thrust constraints. This is done with an inviscid three-dimensional unsteady vortex-lattice method, for which the moderate level of fidelity is offset by a relatively inexpensive computational cost. The design is performed with a gradient-based optimization, where gradients are computed with an analytical sensitivity analysis. Wake terms provide the only connection between the forces generated at disparate time steps and must be included to compute the derivative of the aerodynamic state at a time step with respect to the wing shape at all previous steps. The cyclic wing morphing, superimposed upon the flapping motions, is defined by a series of spatial and temporal approximations. The generalized coordinates of a finite number of twisting and bending modes are approximated by cubic splines. The amplitudes at the control points provide design variables; increasing,the number of variables (providing the wing morphing with a greater degree of spatial and temporal freedom) is seen to provide increasingly superior designs, with little increase in computational cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available