4.5 Article

Growth and physiological responses of the citrus rootstock Swingle citrumelo seedlings to partial rootzone drying and deficit irrigation

Journal

JOURNAL OF AGRICULTURAL SCIENCE
Volume 148, Issue -, Pages 593-602

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0021859610000377

Keywords

-

Funding

  1. University of Florida/Institute of Food and Agricultural Sciences

Ask authors/readers for more resources

The effects of deficit irrigation (DI) and partial rootzone drying (PRD) on the growth and mineral nutrition of citrus rootstock seedlings in the glasshouse were determined, as well as the potential of DI and PRD to trigger root-to-shoot signalling of abscisic acid (ABA) to increase the growth per amount of water used (water use efficiency (WUE)). In the DI study, 3-month-old seedlings of the important citrus rootstock Swingle citrumelo with intact roots received three irrigation treatments: control (1.00 evapotranspiration (ET)), 0.75 ET and 0.50 ET. DI clearly decreased growth, the net assimilation of CO2 (ACO(2)), WUE and the total content of N and K in leaves, even though concentrations of leaf N and K were increased in the drought-stressed smaller plants. Root K was not affected by DI treatments. Leaf ABA concentration increased linearly with DI. For the PRD study, root systems of 6-month-old Swingle citrumelo were split into half and allowed to become established in adjacent pots. There were three irrigation treatments: control (1.00 of the total crop ET, 0.50 in each pot), PRD 50-0 (0.50 ET by weight applied to only one-half of root zone) and DI 25-25 (0.50 ET in total, with 0.25 ET applied to each root half). Although the total root length was decreased by the DI 25-25 treatment, PRD 50-0 did not affect any growth characteristics compared to control plants. The dry root zone of the PRD 50-0 treatment had a higher specific root length, longer roots per dry weight, than the wet root zone. Leaf ACO(2) and WUE of the DI 25-25 treatment were significantly lower than control plants after 11 weeks. Although the total contents of N and K in leaves were not affected by either PRD treatment, the concentrations of N and K in leaves were increased by DI 25-25. Root K was decreased by PRD treatments. Leaf ABA concentration was increased by PRD 50-0 but not by DI 25-25. Although all drought stress treatments increased the levels of ABA in leaves, DI and PRD treatments did not affect the whole plant WUE. Compared to well-irrigated control plants, DI reduced growth, whereas PRD 50-0 did not.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available