4.2 Article

Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt

Journal

JOURNAL OF AFRICAN EARTH SCIENCES
Volume 58, Issue 1, Pages 141-151

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jafrearsci.2010.01.007

Keywords

Albite granite; Rare metal; ASTER; Band combinations; Band ratio; Quartz Index

Ask authors/readers for more resources

ASTER level 1B (radiance at the sensor) TIR-bands and level 2B04 (surface emissivity) data were analyzed to detect four of 14 rare-metal-enriched albite granite, which are classified as I-type magnetite-series (G3 type) granites in the Central Eastern Desert of Egypt. Analysis of the shapes of laboratory emissivity spectrum of albite granite samples measured by portable emission spectrometer and albite mineral spectra from ASTER spectral library at the website of JPL of NASA showed that, albite granite samples has a higher emissivity in bands 12,13 and 14 than in bands 10 and 11. To identify and map this type of granite, Quartz Index, as well as band ratios, band ratio combination and band combinations were used, based on the shapes of the analyzed emissivity spectrum of albite granite samples and albite mineral. The Quartz Index (QI) was high for quartz-rich/feldspar poor rocks and was low for K-feldspar or gypsum-rich rocks. Albite rich granites were detected as dark pixels in the QI image. The proposed band ratio b12/b11 clearly identified the albite granite bodies as dark regions. False color images of band combination of 14:12:10 and 12:13:11 in R:G:B clearly mapped the albite granite bodies as light brownish yellow and light greenish regions respectively. A new ASTER colored composite band ratio combination b12/b13:b11/b12:b14/b13 as R:G:B is applied successfully for mapping albite granite in the study area. This new combination clearly separated albite granite as pinkish magenta color. An ASTER scene covering the study area acquired on a different date was used to determine the effect of atmospheric and surface temperature conditions on the ratio and the mathematical band operation. The results indicated no significance differences. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available