4.5 Article

Doubly Spectral Stochastic Finite-Element Method for Linear Structural Dynamics

Journal

JOURNAL OF AEROSPACE ENGINEERING
Volume 24, Issue 3, Pages 264-276

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)AS.1943-5525.0000070

Keywords

Random field; Spectral method; Stochastic finite element; Frequency response; Karhunen-Loeve expansion

Funding

  1. UK Engineering and Physical Sciences Research Council (EPSRC)
  2. Leverhulme Trust

Ask authors/readers for more resources

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loeve expansion. Numerical examples are given to illustrate the unified spectral approach. DOI: 10.1061/(ASCE)AS.1943-5525.0000070. (C) 2011 American Society of Civil Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available