4.6 Article

Validating CFD predictions of highly localized aerosol deposition in airway models: In vitro data and effects of surface properties

Journal

JOURNAL OF AEROSOL SCIENCE
Volume 59, Issue -, Pages 6-21

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jaerosci.2013.01.008

Keywords

Airway particle deposition; Microdosimetry; Surface roughness; Surface coating; Modeling airway deposition; In vitro aerosol deposition

Funding

  1. NSF GAANN fellowship
  2. US FDA [U01 FD004570]

Ask authors/readers for more resources

Local deposition of pharmaceutical and environmental aerosols governs desorption, uptake, and biological response within the respiratory airways. Few studies have reported estimates of numerical microdosimetry and even fewer have compared these results with experiments. This study evaluated the effects of surface coating and roughness on the local deposition of inhaled coarse micrometer particles in an in vitro asymmetric double bifurcation geometry. The double bifurcation geometry is representative of airway generations 3-5 and includes mean asymmetry approximations from previous anatomical studies. Polystyrene latex 10 mu m monodisperse particles were delivered at a steady state tracheal flow rate of 60 l/min (LPM) and mean local deposition patterns were resolved on a grid of 0.75 mm squares using fluorescent microscopy. The three airway geometry surfaces tested were unaltered, coated with silicone oil, and sanded-coated. For the hard plastic in vitro models employed, coating the surface was shown to be important in order to prevent bounce and re-entrainment of the particles. Sanding the models altered the local deposition profile in an uncontrolled way and is therefore not recommended for future experiments. The best overall match between the in vitro results and CFD simulations was the coated experimental geometry and coarse wall roughness simulations. For this case, the relative error between the experiments and simulations for total deposition was 6%. On a local deposition basis, cumulative lines of deposition fraction in the x and y-directions showed reasonable agreement between the experiments and simulations. However, some evidence of post-deposition particle rolling or spreading was observed with the coated experiments at the second bifurcation. Comparing experimental and CFD results cell by cell, higher maximum deposition enhancement factors (DEFs) were observed for the in vitro cases, perhaps due to factors not included in the CFD simulations. This result implies that previously predicted maximum DEF values from CFD simulations may be conservatively low and that actual values with in vitro models or in vivo may be even higher than predicted. In conclusion, this study provides a valuable new dataset for understanding the effects of surface characteristics on local deposition, assessing hotspot magnitude in the tracheobronchial airways, and validating CFD predictions. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Chemical

Design of a sheathed water condensation particle counter with variable saturation ratio

Francisco J. Higuera, Juan Fernandez de la Mora

Summary: This study investigates a particle condensation device that uses cold and warm humid air streams to achieve water vapor condensation. Compared to existing water condensation particle counters, this configuration offers advantages such as variable saturation ratio, accelerated penetration of water vapor, and a relatively uniform saturation field.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Development of a physics-based method for calibration of low-cost particulate matter sensors and comparison with machine learning models

Brijal Prajapati, Vishal Dharaiya, Manoranjan Sahu, Chandra Venkatraman, Pratim Biswas, Kajal Yadav, Delwin Pullokaran, Ramya Sunder Raman, Ruqia Bhat, Tanveer Ahmad Najar, Arshid Jehangir

Summary: This study evaluated the performance of a low-cost particulate matter sensor and proposed a physics-based calibration method. The results showed that the physics-based calibration approach performed better compared to statistical models at both observation sites.

JOURNAL OF AEROSOL SCIENCE (2024)

Correction Engineering, Chemical

Technical note: Identifying a performance change in the Plantower PMS 5003 particulate matter sensor (vol 174 , 106256 ,2023)

N. Searle, K. Kaur, K. Kelly

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Rotating disk diluter hyphenated with single particle ICP-MS as an online dilution and sampling platform for metallic nanoparticles characterization in ambient aerosol

Tianyu Cen, Laura Torrent, Andrea Testino, Christian Ludwig

Summary: In this study, a hyphenated setup consisting of a rotating disk diluter (RDD) with spICP-MS (RDDspICP-MS) was used for online sampling and characterization of metallic nanoparticles (NPs) in ambient pressure aerosols. The RDD allowed for constant flow rate sampling of aerosols and adjusting the dilution ratio for different particle number concentrations (PNCs). The feasibility of this setup was tested with different sizes of AuNPs in argon-based and air-based aerosols, and the results showed a lower limit of detection for number concentration. The capability of the setup to accurately investigate multi-modal samples and the interference of ionic species was also demonstrated.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Electrodynamic single-particle trap integrated into double-cavity ring-down spectroscopy for light extinction

A. Valenzuela, E. Bazo, R. A. Rica, L. Alados-Arboledas, F. J. Olmo-Reyes

Summary: This article introduces a method to measure the extinction cross section of levitated particles using an electrodynamic trap and double-cavity ring down spectroscopy technique, and demonstrates the potential of this method in 1,2,6-hexanetriol particles through simulations and experiments. Unlike traditional methods, this technique provides crucial information about the extinction cross section of sodium chloride particles during dehydration and hydration processes.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Preparing dry powder inhalation formulation of salbutamol sulfate using an ultrasonic atomizer device

Shadi Yaqoubi, Mohaddese Sokuti, Sahand Mazloum-Ravasan, Kofi Asare-Addo, Hamed Hamishehkar, Ali Nokhodchi

Summary: In this study, a modified version of ultrasonic spray pyrolysis was used to prepare salbutamol sulfate dry powder. The engineered particles showed suitable characteristics for effective drug delivery to the lungs and demonstrated acceptable aerosolization performance. This newly introduced method appears to be capable of producing dry powder formulations of different drugs without the need for surfactants or stabilizers.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Digital in-line holography to explore saliva aerosolization mechanisms in speech

Ashley L. Nord, Patrice Dosset, Pierre Slangen, Manouk Abkarian

Summary: Phonation has been found to be a potent transmission route for the COVID-19 virus. To control transmission, it is important to measure the amount of aerosols produced by speech. Researchers used digital in-line holography to overcome experimental challenges and successfully imaged the formation and deformation of saliva filaments in the mouth during speech, as well as the resulting aerosolized droplets.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

The effect of surface roughness on the viscoelastic energy in a collision

Yating Wang, Yiyang Zhang, Zhu Fang, Xinxin Wu

Summary: The research investigates the energy dissipation in particle-wall collision with roughness using the finite element method. The results show that the presence of surface roughness leads to lower viscoelastic dissipation and higher restitution coefficient compared to a smooth surface. The collision time is identified as a key factor in predicting the energy dissipation.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Condensation particle counters: Exploring the limits of miniaturisation

Shaamrit Balendra, Akshay Kale, Julie Pongetti, Mohsen Kazemimanesh, Molly Haugen, Lee Weller, Adam Boies

Summary: The measurement of airborne particles is important for detecting and characterising air pollution, emissions, fire detection, occupational and climate impacts. However, current optical particle counters (OPCs) cannot measure ultrafine particles. This study explores the limitations of miniaturising a condensation particle counter (CPC) growth chamber and provides a toolkit for optimising the design of miniaturised CPC-GCs.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

A thermal evaporator for aerosol core-shell nanoparticle synthesis

Markus Snellman, Namsoon Eom, Maria E. Messing, Knut Deppert, Chris Hogan

Summary: Segregated bimetallic nanoparticles, such as core-shell nanoparticles, have attracted widespread interest in various fields like biomedicine, catalysis, and optoelectronics. Aerosol technology provides an optimal platform for controlling the size, structure, and composition of nanoparticles, which are crucial parameters for tuning the material performance for specific applications. In this study, researchers developed a novel evaporator design that allows on-line coating of core particles with a shell directly in the gas phase. By utilizing a local heater, the researchers were able to decouple the heating process of the evaporating material from the aerosol particles, thereby limiting core-shell alloying. The resulting core-shell particle formation with controllable shell thickness was demonstrated using evaporation of zinc onto core particles of gold, tin, and bismuth. Simple models were also discussed to explain the observed growth process inside the evaporator and the formation of the shell.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

Relationship of laser-induced fluorescence and scattered signal intensities of fluorescent PSL particles

Kentaro Misawa, Yuto Kasai

Summary: In this study, the laser-induced fluorescence technique was used to observe scattered and fluorescent signals from fluorescent polystyrene latex particles. The ratio of fluorescence to scattered signal intensities was found to be almost equal for particles of the same size, allowing for the separate observation of mixed-size fluorescent particles. Relative fluorescence intensities were obtained by incorporating ratios of fluorescence to scattered signal and relative scattered signal intensities.

JOURNAL OF AEROSOL SCIENCE (2024)

Article Engineering, Chemical

The BioCascade-VIVAS system for collection and delivery of virus-laden size-fractionated airborne particles

Sripriya Nannu Shankar, William B. Vass, John A. Lednicky, Tracey Logan, Rebeccah L. Messcher, Arantzazu Eiguren-Fernandez, Stavros Amanatidis, Tara Sabo-Attwood, Chang-Yu Wu

Summary: This study introduces a testing system that allows for direct exposure of aerosolized viruses onto host cells. By collecting particles of different sizes and analyzing them, researchers obtained information on the concentration and viability of the virus at different particle sizes.

JOURNAL OF AEROSOL SCIENCE (2024)