4.3 Article

Distribution of the Na,K-ATPase α Subunit in the Rat Spiral Ganglion and Organ of Corti

Publisher

SPRINGER
DOI: 10.1007/s10162-008-0152-9

Keywords

hair cell; afferent; efferent; hearing; auditory nerve

Funding

  1. National Institute of Deafness and Communication Disorders [DC00276, DC006476]
  2. National Organization for Hearing Research
  3. American Academy of Audiology
  4. Deafness Research Foundation

Ask authors/readers for more resources

Processing of sound in the cochlea involves both afferent and efferent innervation. The Na,K-ATPase (NKA) is essential for cells that maintain hyperpolarized membrane potentials and sodium and potassium concentration gradients. Heterogeneity of NKA subunit expression is one mechanism that tailors physiology to particular cellular demands. Therefore, to provide insight into molecular differences that distinguish the various innervation pathways in the cochlea, we performed a variety of double labeling experiments with antibodies against three of the alpha isoforms of the NKA (NKA alpha 1-3) and markers identifying particular subsets of neurons or supporting cells in whole mount preparations of the organ of Corti and spiral ganglion. We found that the NKA alpha 3 is abundantly expressed within the membranes of the spiral ganglion somata, the type I afferent terminals contacting the inner hair cells, and the medial efferent terminals contacting the outer hair cells. We also found expression of the NKA alpha 1 in the supporting cells that neighbor the inner hair cells and express the glutamate transporter GLAST. These findings suggest that both the NKA alpha 1 and NKA alpha 3 are poised to play an essential role in the regulation of the type I afferent synapses, the medial efferent synapses, and also glutamate transport from the afferent-inner hair cell synapse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available