4.4 Article

Evolution of Different Inclusions during Ladle Treatment and Continuous Casting of Stainless Steel

Journal

ISIJ INTERNATIONAL
Volume 53, Issue 12, Pages 2099-2109

Publisher

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.53.2099

Keywords

stainless steel; clogging; electrolytic extraction; inclusion; spinel; cluster; non-infinite solution

Funding

  1. China Scholarship Council (CSC)
  2. Swedish Governmental Agency for Innovation Systems (VINNOVA)
  3. Swedish Steel Producer's Association (Jernkontoret)

Ask authors/readers for more resources

The inclusions and clusters in steel samples of two similar steel grades of high-silicon non-calcium treated (HSiNC) stainless steels were investigated and compared during ladle treatment and continuous casting. Samples of liquid steel and slag were taken at different stages of the ladle treatment and casting during two plant trials: Low Al steel (LAI) and High Al steel (HAI). After electrolytic extraction of the steel samples, characteristics of inclusions and clusters (such as morphology, composition, size and number) were investigated in three dimensions (3D) by SEM in combination with EDS. Moreover, the composition of typical inclusions and clusters was analyzed on a polished cross section of steel samples. Spherical (SP), irregular and regular (IR) inclusions and clusters (CL) were observed in the samples from both heats. It was found that the morphology and composition of inclusions and clusters in both heats were significantly changed during the ladle treatment and casting. Most of inclusions (44-98%) in a Low Al steel are MgO-CaO-SiO2-Al2O3 spherical inclusions. The compositions of IR inclusions and clusters in steel samples of a High Al steel were mostly MgO center dot Al2O3 spinet, but also the complex SP inclusions containing Al2O3-MgO-CaO-SiO2. In addition, phase stability diagram based on Darken's quadratic formalism and Redlich-Kister type polynomial was estimated for both heats at a non-infinite solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available