4.5 Article

Schedule-dependent inhibition of T-cell lymphoma cells by cotreatment with the mTOR inhibitor everolimus and anticancer drugs

Journal

INVESTIGATIONAL NEW DRUGS
Volume 30, Issue 1, Pages 223-235

Publisher

SPRINGER
DOI: 10.1007/s10637-010-9558-4

Keywords

Everolimus; RAD001; T-Cell Lymphoma; mTOR inhibition

Funding

  1. National Nature Science Foundation of China [30572157, 30371622, 81071950]

Ask authors/readers for more resources

Objective Everolimus (RAD001) is a novel mammalian target of rapamycin (mTOR) inhibitor, and anti-proliferative activity in various malignancies has been reported. This study evaluated the anti-tumor effects and schedule-dependent synergism of everolimus in combination with other chemotherapeutic agents in T-cell lymphoma cell lines. Materials and methods Human T-cell lymphoma cell lines Hut-78 and Jurkat were treated with increasing doses of everolimus, alone or in combination with doxorubicin, etoposide, vincristine, or bortezomib, using different dosing schedules. Anti-tumor effects were measured by assays for cell proliferation, apoptosis, and cell cycle distribution. Drug interactions were determined by median effect analysis. Results Exposure to everolimus alone induced G1 phase cell cycle arrest without significant apoptosis. With certain dosing schedules, everolimus showed synergism with doxorubicin, etoposide, and bortezomib, but antagonism with vincristine. Cytotoxic synergism was observed following cotreatment with doxorubicin and everolimus, bortezomib and everolimus, doxorubicin followed by everolimus, and bortezomib followed by everolimus. By contrast, cell exposure to everolimus followed by doxorubicin or followed by bortezomib resulted in antagonistic effects. Sequential exposure to doxorubicin or bortezomib followed by everolimus effectively prevented potential negative interactions, and resulted in drug synergism. Drug combination synergisms or antagonisms were associated with variable effects on the cell cycle distribution. Conclusions Everolimus effectively inhibited the growth of T-cell lymphoma cells in vitro. Specific schedule-dependent combinations of everolimus with other anti-tumor agents which avoid potential drug antagonism and produce effective synergism may lead to clinically effective treatments for T-cell lymphoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available