4.2 Article

Temporal Dynamics of River Biofilm in Constant Flows: A Case Study in a Riverside Laboratory Flume

Journal

INTERNATIONAL REVIEW OF HYDROBIOLOGY
Volume 95, Issue 2, Pages 156-170

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/iroh.200911203

Keywords

epilithon; periphyton; bacterial community fingerprinting; community metabolism; experimental flume

Funding

  1. FEDER (Fonds Europeens de Deyeloppement Regional)
  2. ACT-FNS ECCO Ecosphere Continentale : processus et modelisation

Ask authors/readers for more resources

A 15-week experiment was performed in a riverside laboratory flume (with diverted river water) to check variations of river biofilm structure (biomass, algal and bacterial compositions) and function (community gross primary production GPP and respiration) under constant flow while water quality went through natural temporal variations. One major suspended matter pulse coinciding with one river flood was recorded after 10 weeks of experiment. Epilithic biofilm first exhibited a 10-week typical pattern of biomass accrual reaching 33 g ash-free dry matter (AFDM) m(-2) and 487 mg chlorophyll-a m(-2) and then, experienced a shift to dominance of loss processes (loss of 60% AFDM and 80% chlorophyll-a) coinciding with the main suspended matter pulse. Algal diversity remained low and constant during the experiment: Fragilaria capucina and Eneyonema minutum always contribute over 80% of cell counts. DGGE banding patterns discriminated between two groups that corresponded to samples before and after biomass loss, indicating major changes in the bacterial community composition. GPP/R remained high during the experiment, suggesting that photoautotrophic metabolism prevailed and detachment was not autogenic (i.e., due to algal senescence or driven by heterotrophic processes within the biofilm). Observational results suggested that silt deposition into the biofilm matrix could have triggered biomass loss.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available