4.6 Article

Coupled mixed-mode cohesive zone modeling of interfacial debonding in simply supported plated beams

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 50, Issue 14-15, Pages 2477-2494

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2013.03.035

Keywords

Cohesive zone modeling; Interfacial stresses; Mixed-mode fracture; Plated beams; Plate end debonding

Categories

Funding

  1. European Research Council under the European Union's Seventh Framework Programme [279439]

Ask authors/readers for more resources

The development of predictive models for plate end debonding failures in beams strengthened with thin soffit plates is a topic of great practical relevance. After the early stress-based formulations, fracture mechanics approaches have become increasingly established. More recently, the cohesive zone (CZ) model has been successfully adopted as a bridge between the stress- and fracture mechanics-based treatments. However, the few studies of this nature propose complex formulations which can only be implemented numerically. To date, the only available analytical solution based on CZ modeling for the prediction of interfacial stresses/debonding in plated beams is limited to the determination of interfacial shear stresses and thus neglects the mixed-mode effects generated by the presence of interfacial normal stresses at the plate end. This paper presents a new analytical formulation based on the CZ modeling approach for the prediction of plate end debonding in plated beams. A key enhancement with respect to the previous solution is the use of a coupled mixed-mode CZ model, which enables a full account of mixed-mode effects at the plate end. The model describes the evolution of the interface after the end of the elastic regime, and predicts the value of the load at incipient debonding. The achievement of a closed-form solution for this quite complex case entails the introduction of a crucial simplifying assumption, as well as the ad hoc modeling of an effective cohesive interfacial response. The paper presents the analytical theory and compares its predictions with numerical and experimental results. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available