4.6 Article

Size effects of basic cell in static analysis of sandwich beams

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 45, Issue 9, Pages 2512-2533

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2007.12.007

Keywords

multilayered structure; sandwich beam; size effect; homogenization method; basic cell; topology optimization

Categories

Ask authors/readers for more resources

In this paper, multilayered sandwich beam structures are considered. Within the scope of static analyses and stiffness design of such type of lightweight and functional structures, size effects of the basic cell are studied both theoretically and numerically in a systematic way for the first time. The direct FE discretization method, the homogenization method and the classical beam theory are examined systematically to reveal, on one hand, the existence of the size effect, and on the other hand, the ability of each method in capturing the size effect upon the static stress distribution and structural deflection. Particularly, limitations of the homogenization method are clarified although the latter is widely applied today in the equivalent modeling and topology design of cellular materials of sandwich structures. By means of the above methods, bending problems of multilayered beams and cellular core sandwiches are solved to illustrate variations of the deflection, stress as well as the computing accuracies in terms of the size of the basic cell. It is shown that the size effect is important when the basic cell has a considerable dimension relative to the structural size and that this effect decreases rapidly with the size reduction of the basic cell. Theoretically, the homogenized result corresponds to the limit solution when the size of the basic cell tends to be infinitely small. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available