4.7 Article

Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots

Journal

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
Volume 32, Issue 2, Pages 218-246

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364912467486

Keywords

micro/nano robots; mechanics; design and control; path planning for multiple mobile robot systems; mobile and distributed robotics; MEMS; underactuated robots

Categories

Funding

  1. NIH [GM-65982, GM-78031, NS-79929]
  2. Office for Domestic Preparedness, Department of Homeland Security, USA [2000-DT-CX-K001]

Ask authors/readers for more resources

We present control strategies that implement planar microassembly using groups of stress-engineered MEMS microrobots (MicroStressBots) controlled through a single global control signal. The global control signal couples the motion of the devices, causing the system to be highly underactuated. In order for the robots to assemble into arbitrary planar shapes despite the high degree of underactuation, it is desirable that each robot be independently maneuverable (independently controllable). To achieve independent control, we fabricated robots that behave (move) differently from one another in response to the same global control signal. We harnessed this differentiation to develop assembly control strategies, where the assembly goal is a desired geometric shape that can be obtained by connecting the chassis of individual robots. We derived and experimentally tested assembly plans that command some of the robots to make progress toward the goal, while other robots are constrained to remain in small circular trajectories (orbits) until it is their turn to move into the goal shape. Our control strategies were tested on systems of fabricated MicroStressBots. The robots are 240-280 mu m x 60 mu m x 7-20 mu m in size and move simultaneously within a single operating environment. We demonstrated the feasibility of our control scheme by accurately assembling five different types of planar microstructures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available