4.6 Article

Detection of sandy soil surfaces using ASTER-derived reflectance, emissivity and elevation data: potential for the identification of land degradation

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 29, Issue 6, Pages 1833-1840

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431160701851791

Keywords

-

Ask authors/readers for more resources

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) reflectance and emissivity data were used to discriminate nonphotosynthetic vegetation (NPV) from exposed soils, to produce a topsoil texture image, and to relate sand fraction estimates with elevation data in an agricultural area of central Brazil. The results show that the combination of the shortwave infrared (SWIR) bands 5 and 6 (hydroxyl absorption band) and thermal infrared (TIR) bands 10 and 14 (quartz reststrahlen feature) discriminated dark red clayey soils and bright sandy soils from NPV (crop litter), respectively. The ratio of the bands 10 and 14 was correlated with laboratory measured total sand fraction. When applied to the image and associated with topography, a predominance of sandy soil surfaces at lower elevations and clayey soil surfaces at higher elevations was observed. Areas presenting the largest sand fraction values, identified from ASTER band 10/14 emissivity ratio, were coincident with land degradation processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available