4.5 Article

Thermodynamic modeling of magnetic hysteresis in AMRR cycles

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrefrig.2014.07.013

Keywords

Magnetocaloric; Hysteresis; Magnetic refrigeration; AMRR; Thermodynamic

Funding

  1. Department of Energy [DE-EE0003850]

Ask authors/readers for more resources

Current models of Active Magnetic Regenerative Refrigeration (AMRR) cycles are not able to capture the effect of magnetic hysteresis and are therefore strictly limited to second order magnetic transition (SOMT) materials. The discovery of the giant magnetocaloric effect (GMCE) in first order magnetic transition (FOMT) materials has generated substantial interest. FOMTs yield large adiabatic temperature changes but also exhibit significant magnetic hysteresis. This work quantifies the effects of magnetic hysteresis. Thermodynamically, hysteresis is treated as a source of entropy generation that is proportional to the area swept by the hysteresis loop experienced locally by the material during one refrigeration cycle. The 1-D numerical model presented by Engelbrecht (2008) is modified to include magnetic hysteresis. Hysteresis losses are shown to be directly proportional to regenerator volume. Therefore, at large refrigeration capacity to volume ratios, AMRR beds using layered FOMT materials significantly outperform the same cycle using layered SOMT refrigerants. (C) 2014 Elsevier Ltd and IIR. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available