4.5 Article

A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status

Journal

INTERNATIONAL JOURNAL OF RADIATION BIOLOGY
Volume 84, Issue 4, Pages 253-264

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09553000801953342

Keywords

radiosensitivity; human tumor cells; ATM; TP53

Funding

  1. NCI NIH HHS [P0-CA79862] Funding Source: Medline
  2. NATIONAL CANCER INSTITUTE [P01CA079862] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Purpose: We have previously shown in a limited number of tumor cell lines derived from only two histological types that clonogenic survival patterns fall into radiosensitivity groups, each group associating with a specific genotype. We now establish a global, quantitative description of human tumor cells based on genotype-dependent radiosensitivity across histological types. Methods: We measure clonogenic radiosensitivity in 39 human tumor cell lines that vary in histological type (colorectal, glioblastoma, prostate, bladder, teratoma, breast, melanoma and liver) and expression of several genes purported to influence radiosensitivity: ATM (ataxia telangiectasia mutated), TP53 (tumor protein 53), CDKN1A (cyclin-dependent kinase N1A), 14-3-3 (an isoform of the 14-3-3 gene) and DNA mismatch repair genes . For each survival curve we use the linear-quadratic model and a linear-linear model to extract multiple coefficients and seek correlation across histological types. Results: Under one-parameter analysis, survival rate at circa 2Gy, cell lines segregate into two major, statistically-significant groups that correlate with TP53 status (wildtype versus mutant). Under two-parameter analysis, cell lines segregate into four radiosensitivity groups based on correlations between response at lower doses (ca. 2Gy) and a component of response to higher doses (4Gy). Conclusions: Intrinsic radiosensitivity of 39 human tumor cell lines segregate into distinct genotype-dependent radiosensitivity groups that associate with mutATM, wtTP53, mutTP53, and an unidentified factor in some glioblastoma cells. Genotype-dependent radiosensitivity underlies histology-dependent variation in radiosensitivity. Our analysis establishes a quantitative overview of radiosensitivity that can predict possible response of human tumors to radiotherapy protocols.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available