4.7 Article

Sequencing mixed-model assembly lines to minimise the number of work overload situations

Journal

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Volume 49, Issue 16, Pages 4735-4760

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00207543.2010.507607

Keywords

assembly; assembly line balancing; assembly lines; assembly planning; assembly systems; automated assembly; U lines; flexible assembly; sequencing

Ask authors/readers for more resources

The mixed-model sequencing problem is to sequence different product models launched down an assembly line, so that work overload at the stations induced by direct succession of multiple labour-intensive models is avoided. As a concept of clearing overload situations, especially applied by Western automobile producers, a team of cross-trained utility workers stands by to support the regular workforce. Existing research assumes that regular and utility workers assemble side-by-side in an overload situation, so that the processing speed is doubled and the workpiece can be finished inside a station's boundaries. However, in many real-world assembly lines the application of utility workers is organised completely differently. Whenever it is foreseeable that a work overload will occur in a production cycle, a utility worker takes over to exclusively execute work, whereas the regular worker omits the respective cycle and starts processing the successive workpiece as soon as possible. This study investigates this more realistic sequencing problem and presents a binary linear program along with a complexity proof. Different exact and heuristic solution procedures are then introduced and tested. Additional experiments show that the new model is preferable from an economic point of view whenever utility work causes considerable setup activities, for example walking to the respective station.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available